

Peering Trends & Best Practices

Peering Days 2025 Patrick Prangl <pprangl@arista.com>

Confidential. Copyright © Arista 2025. All rights reserved.

IPv4 over IPv6 networks

RFC5549/8950

Confidential. Copyright © Arista 2025. All rights reserved.

2

What is the problem?

- IPv4 addresses are expensive
 - Most efficient use of your existing IPv4 addresses
 - Sourcing IPv4 addresses for P-t-P connections is a difficult business case
 - Drives 'cost of product' up
- Growing pains
 - Renumbering at IXPs are causing pain for the peering ecosystem
- No more IPv4 address 're-using' for 'PtP transit networks'

IPv6 to the rescue

Network Working Group Request for Comments: 5549 Category: Standards Track F. Le Faucheur E. Rosen Cisco Systems May 2009

Advertising IPv4 Network Layer Reachability Information with an IPv6 Next Hop

Internet Engineering Task Force (IETF) Request for Comments: <u>8950</u> Obsoletes: <u>5549</u> Category: Standards Track Published: November 2020 ISSN: 2070-1721 S. Litkowski Cisco S. Agrawal Cisco K. Ananthamurthy Cisco K. Patel Arrcus

Advertising IPv4 Network Layer Reachability Information (NLRI) with an IPv6 Next Hop

Quite a common concept ... but in data centers

Quite a common concept ... but in data centers

RFC 5549: IPv4 Unicast NLRI with IPv6 Next Hops

Some AFIs/SAFIs in BGP allow the next-hop address to belong to a different address family

MP_REACH_NLRI	AFI	1
	SAFI	1, 2, 4 or 128
	Length of Next Hop Address	16 or 32 bytes
	Next Hop Address	IPv6 address of Next Hop
	NLRI	NLRI as per current AFI/SAFI selection

RFC 5549 vs. 8950

RFC 8950 is extending the NLRI behavior of RFC 5549

- Multicast VPN Support added
- NLRI encoding change for AFI/SAFI 1/128
 - Bringing consistency to next hop encoding for 'VPNv4 over IPv4' and 'VPNv6 over IPv6'
 - Not backwards compatible/interoperable for AFI/SAFI 1/128 of RFC 5549 due to NH field change
- RFC 8950 is mostly backwards interoperable with RFC 5549
 - No impact for 'standard' BGP IPv4 Unicast use case
 - Exception: VPNv4 over IPv6-only Cores (RFC 8950 Section 6.2)

RFC 8950: RFC 5549 with Extended VPN support

MP_REACH_NLRI	AFI	1
	SAFI	1, 2, or 4
	Length of Next Hop Address	16 or 32 bytes
	Next Hop Address	IPv6 address of Next Hop
	NLRI	NLRI as per current AFI/SAFI selection

MP_REACH_NLRI	AFI	1
	SAFI	128 or 129
	Length of Next Hop Address	24 or 48 bytes
	Next Hop Address	VPN IPv6 address of a NH with an 8-octet RD
	NLRI	NLRI as per current AFI/SAFI selection

How does it work?

- R1 receives an IPv4 prefix via an IPv4 Unicast BGP session from an IPv6 neighbor
- R1 receives an IPv4 packet and wants to forward it
 - R1 looks up the destination for the IPv4 prefix and finds an IPv6 next-hop
 - R1 looks up the MAC for the IPv6 next-hop via IPv6 neighbor discovery
- R1 forwards packet to outgoing interface for MAC address of R2

Is this a supported feature?

An independent collection of platforms supporting this feature created by the **RFC 8950 Working Group** of Euro-IX

Configuration examples are also available in the GitHub repository

Vendor	Platform	Software Version	Notes
Arista	EOS	4.22.1F	Some support already in 4.17
Cisco	IOS XE	not supported	IPv6 next hop support for VPN routes since 17.8.1
Cisco	IOS XR	7.3.3	
Cisco	NX-OS	?	to be tested
CZNIC	Bird	2.0.8	RIB-only since 2.0.0; Linux kernel version 5.2 required
Exa	ExaBGP	4.1.0	Cannot program Linux netlinks for RFC5549
Extreme Networks	IronWare, SLX-OS	not supported	verified with vendor
Juniper	Junos	17.3R1	
Mikrotik	ROS	not supported	
NetDEF	FRR	7.0.0	Linux kernel version 5.2 required
Nokia	SR-OS	20.2.R1	
Nokia	SR Linux	20.06	to be tested
OSRG	GoBGP	supported for several years	no FIB integration tested
RSSF	OpenBGPd	not supported	on the roadmap
Edgecore	OCNOS	not supported in 1.3.8	Awaiting further comment from OCNOS developers
Vvatta	VyOS	1.2.2	See FRR above

https://github.com/euro-ix/rfc8950-ixp

Adoption of Service Providers

Adoption of Service Providers

Peering Edge Security best practices

Confidential. Copyright © Arista 2025. All rights reserved.

14

Peering Edge Security Best Practices

ACL	CoPP	Max Prefix Limit
Prefix Filtering (Prefix/AS Path Lists)	MD5 Authentication	TTL Security Check (GTSM)
TCP-AO Authentication	RPKI	Logging

Peering Edge Security Best Practices

Potential Attack Vectors

DoS attacks SYN flooding **TCP FIN/RST attacks TCP Session hijacking** Man in the Middle **Replay Attacks Route hijacking attempts**

Securing TCP Sessions

Network Working Group Request for Comments: 4953 Category: Informational J. Touch USC/ISI July 2007

Defending TCP Against Spoofing Attacks

Generalized TTL Security Mechanism (GTSM)

TLS

SYN Cookies

TCP MD5

RFC 4953: Defending TCP Against Spoofing Attacks

IPsec

DoS Attack Vector

- TTL/Hop limit = 1 is default for eBGP sessions
 - Most of the time we do not want multi-hop sessions anyways
- Remote attacker could adjust TTL and spoof packets
 - Can cause TCP session resets and increase CPU utilization (starvation attack)

Generalized TTL Security Mechanism

- Uses TTL (IPv4) or Hop Limit (IPv6) attributes to protect
- Enable GTSM (RFC 3682) for **directly connected eBGP sessions**
 - Packets will be transmitted with TTL 255 (or configured value)
 - Packets received with less than TTL 255 are discarded
- Useful for peers with Public IP PtP networks configured
 - IXP networks are usually not routed globally
 - Customer connections/PNIs usually are routed

Generalized TTL Security Mechanism

Uses TTL (IPv4) or Hop Limit (IPv6) attributes to protect

	AS65000# show bgp neighbors 2001:db8:abcd::fdf2 i TTL TTL is 1
	AS65000(config)# router bgp 65000 AS65000(config-router-bgp)# neighbor 2001:db8:abcd::fdf2 ttl maximum-hops 0
•	AS65000# show bgp neighbors 2001:db8:abcd::fdf2 i TTL TTL is 255, BGP neighbor may be up to 0 hops away

A normal BGP configuration ...

router bgp 65000 router-id 10.255.255.42 bgp missing-policy direction in action deny bgp missing-policy direction out action deny neighbor ISP peer group neighbor ISP ttl maximum-hops 0 neighbor ISP route-map EVERYTHING in neighbor ISP route-map OWN-AS out neighbor 10.11.12.5 peer group ISP neighbor 10.11.12.5 remote-as 65001 neighbor 10.11.12.5 password 7 42yEZ7Db8KU/4m8Is9OcJw==

... with a problem!

router bgp 65000 router-id 10.255.255.42 bgp missing-policy direction in action deny bgp missing-policy direction out action deny neighbor ISP peer group neighbor ISP ttl maximum-hops 0 neighbor ISP route-map EVERYTHING in neighbor ISP route-map OWN-AS out neighbor 10.11.12.5 peer group ISP neighbor 10.11.12.5 remote-as 65001 neighbor 10.11.12.5 password 7 42yEZ7Db8KU/4m8Is9OcJw==

TCP MD5 Option obsoleted in 2010

TCP Authentication Option (RFC 5925)

- Allows the user to authenticate TCP segments
 - Huge improvement over TCP MD5
- Provides stronger hashing algorithms
- Offers protection against replay attacks
- Has better key management

Can rotate keys without resetting the TCP connection

TCP-AO is part of the TCP Header

TCP-AO Concepts

Master Key Tuple	Traffic Key	Message Authentication Code (MAC)
 TCP connection identifier TCP option flag IDs (KeyID / RNextKeyID) Master Key Key Derivation Function (KDF) Message Authentication Code (MAC) algorithm 		
 Properties of MKTs MKT parameters are not changed. New MKTs can be installed Connection can change which MKT it uses 		

TCP-AO Concepts

Master Key Tuple	Traffic Key	Message Authentication Code (MAC)
 MKT (master key) Local and remote IP address pairs TCP port numbers 		
 TCP Initial Sequence Numbers (ISNs) in each direction 		
 Mandatory algorithms (RFC 5926): 		
- KDF_HMAC_SF - KDF_AES_128_		

TCP-AO Concepts

Master Key Tuple	Traffic Key	Message Authentication Code (MAC)	
 Mandatory algorithms (RFC 5926): – HMAC-SHA-1-96 – AES-128-CMAC-96 			
 Calculating of MAC based on: Sequence Number Extension (SNE) → Replay protection! IP Pseudo Header (as used for the TCP checksum) TCP header TCP data 			

How would configuration look like?

Kind=29 Length KeyID | RNextKeyID MAC management security session shared-secret profile BGP secret 10 7 \$1c\$zXHy2/5IOz6JEc5qRNYMBA== receive-lifetime 2023-01-01 00:00:00 infinite \ transmit-lifetime 2023-01-01 00:00:00 infinite secret 0 7 \$1c\$zXHy2/5IOz6JEc5qRNYMBA== receive-lifetime 2023-01-01 00:00:00 infinite \ transmit-lifetime 2023-01-01 00:00:00 infinite router bgp 65006 neighbor 10.255.255.5 remote-as 65001 neighbor 10.255.255.5 password shared-secret profile BGP algorithm hmac-sha1-96 neighbor 10.255.255.10 remote-as 65002 neighbor 10.255.255.10 password shared-secret profile BGP algorithm aes-128-cmac-96

https://www.arista.com/en/support/toi/eos-4-28-2f/16087-bgp-tcp-authentication-option-tcp-ao

TCP-AO Configuration Examples

https://github.com/TCP-AO/Configuration-examples

Confidential. Copyright © Arista 2025. All rights reserved.

Thank You

arista.com

Confidential. Copyright © Arista 2025. All rights reserved.